Butadiene Polymerization with Nickel Compounds: Effect of Cocatalysts

M. C. THROCKMORTON*

Retired from The Goodyear Tire & Rubber Company

SYNOPSIS

The preparation of a high cis-1,4-polybutadiene, using a novel ternary catalyst system composed of triethylaluminum, a soluble nickel compound, and boron trifluoride diethyl etherate has been reported in the literature. The present paper reports the polymerization results obtained when the triethylaluminum was replaced with other alkylaluminums and the BF₃·Et₂O was replaced with other BF₃ complexes or HF·Et₂O. When utilizing BF₃·Et₂O, both the polymerization rate and the polymer DSV decreased significantly as the length of the alkyl group in the alkylaluminum increased from C₁ to C₆. However, the length and nature of the alkyl group had virtually no effect when utilizing BF₃·phenolate (BF₃·2C₆H₅OH) and only a small effect with HF·Et₂O; although the length of the alkyl group had no significant effect when using BF₃ complexes of aromatic aldehydes, the branched alkyl groups gave greater polymerization rates than did the corresponding *n*alkyls. In summary, the strongly acidic complexes, BF₃·phenolate and HF · etherate, promoted rapid polymerization when employed with any of the alkylaluminums. However, with other BF₃ complexes, the alkylaluminum selected had an important influence upon either the conversion and/or the polymer DSV.

INTRODUCTION

Nickel-containing catalysts for the production of very high *cis*-1,4-polybutadiene elastomers were reported first by Ueda and co-workers.¹⁻³ Although they investigated the use of several metal alkyls and metal halides (Lewis acids), most of their published results utilized only a triethylaluminum (TEAL)-nickel carboxylate-boron trifluoride diethyl etherate (BF₃·Et₂O) catalyst system, and Ohnishi² stated that BF₃·Et₂O was the best Lewis acid to use with nickel and that boron appeared to be essential.

Dixon and co-workers⁴ also reported the preparation of high *cis*-1,4-polybutadiene using a nickel salt and $BF_3 \cdot Et_2O$, but employing either butyllithium or lithium tetrabutyl boron rather than TEAL. They studied a range of metal halides and metal halide complexes and concluded that $BF_3 \cdot Et_2O$ gave by far the best results. The present author⁵ described another catalyst system—namely, the complex reaction product of HF, a nickel compound and trialkylaluminums—for producing very high cis-1,4-polybutadiene. The HF-containing system readily produced a high molecular weight polymer, which was suitable for oil extension, and high polymerization rates were obtained when using either TEAL or triisobutylaluminum (TIBAL).

The present paper compares the polymerization results obtained when nine different trialkylaluminums (R_3Al) or dialkylaluminum hydrides (R_2AlH) were utilized as cocatalysts and when the BF₃ · Et₂O was replaced with other BF₃ complexes⁶ or HF · Et₂O.⁷

EXPERIMENTAL

The BF₃ etherate, phenolate, and hydrate complexes were obtained from Allied Chemical Company; the BF₃ \cdot phosphoric acid complex was supplied by Harshaw Chemical Company; the other BF₃ complexes and the HF \cdot etherate were prepared by bubbling BF₃

^{*} To whom correspondence should be addressed at 967 Newport Rd., Akron, OH 44303-1319.

Journal of Applied Polymer Science, Vol. 42, 3019-3024 (1991)

^{© 1991} John Wiley & Sons, Inc. CCC 0021-8995/91/113019-06\$04.00

or HF into the complexing agent. All were approximately 1:1 mol ratio complexes except BF₃ phenolate, which was $BF_3 \cdot 2C_6H_5OH$. The BF₃ and HF were purchased from The Matheson Company. The source and analyses of the aluminum alkyls (R_1R_2Al) have been reported previously.⁸ Nickel octanoate (NiOct) was obtained from The Shepherd Chemical Company.

The polymerization procedure has been described previously.^{5b} Duplicate series of polymerizations were terminated after 1, 2, 4, and 19 h. The dilute solution viscosities (DSV) reported herein were determined on polymers that had reached at least 60% conversion so that DSV would not be a function of conversion level.^{3a} The polymer microstructures were determined from infrared spectra.⁹

RESULTS

Effect of Different Aluminum Alkyls with $BF_3 \cdot Et_2O$

As the length of the alkyl chain in the aluminum alkyls (R_1R_2Al) increased from C_1 to C_6 , both the polymerization rate and the DSV of the polymers were sharply lower when using $BF_3 \cdot Et_2O$. The data in the middle column of Table I and the lower curve in Figure 1 show the polymer yields obtained during

Table I Effect of R_1R_2Al with $BF_3 \cdot Et_2O$

Alkyl in R ₁ R ₂ Al	Polymer Yield (wt %)	Polymer DSV (dL/g)ª
C1	61	2.8
C_2	46	2.8
$n-C_3$	18	2.4
$n-C_4$	14	2.5
i-C ₄	7	1.5
i-C4 — H	8	2.2
$n-C_6$	24	2.6
i-C ₆	6	2.0

Polymerization conditions: 1.85 molar solution of butadiene in benzene. "In situ" catalyst addition, TEAL : NiOct : $BF_3 \cdot Et_2O$ = 0.7 : 0.05 : 0.75 mmhgm (millimole per 100 g monomer). Temperature = 50°C; time = 1 h.

^a DSVs were on duplicate polymers allowed to go to at least 60% conversion (Ref. 3a).

1 h of polymerization with various R_1R_2Al 's ranging from trimethylaluminum to triisohexylaluminum. Increasing the alkyl from C_1 to C_4 appeared to cause most of the decrease in polymer yield.

Duplicate series of polymerizations, which were terminated after 2 and 4 h rather than 1 h, also produced lower polymer yields as the length of the alkyl chain increased, but after 19 h of polymerization, all yields were at least 94% regardless of the size of the alkyl groups.

Figure 1 Effect of number of carbon atoms in alkylaluminum upon polymer yield. Polymerization conditions: 1.85 *M* solution of butadiene in benzene R_1R_2Al : NiOct : BF₃ complex = 0.7 : 0.075 : 0.75 mmhgm for 1 h at 50°C.

Figure 2 Effect of number of carbon atoms in alkylaluminum compounds upon DSV.

Since the DSVs of the polymers were a function of the percentage of conversion, ^{3a} increasing rapidly between zero and about 40% conversion and thereafter reaching an almost constant value for a particular set of conditions, the DSVs reported herein were determined on polymers that had reached at least 60% conversion. The data in the right-hand column of Table I and in the lower portion of Figure 2, despite considerable scattering, show that the DSVs declined as the length of the alkyl increased. The iso-C₄- and iso-C₆-alkyls produced polymers having lower DSVs than did their straight chain counterparts.

BF₃ Ester and Aliphatic Aldehyde Complexes

 BF_3 ester and aliphatic aldehyde and ketone complexes acted similarly to $BF_3 \cdot Et_2O$ in that an increase in the size of the alkyl group on the R_1R_2Al

 Table II
 Comparison of Various BF₃ Complexes

	Polym ('	er Yield %)	DSV	
BF ₃ Complex	TEAL	TIBAL	TEAL	TIBAL
Et ₂ O	46	7	2.8	1.5
Ethylbenzoate	45	34	3.3	1.7
Butyraldehyde	44	20	3.6	2.3

resulted in both a lower polymer yield and lower DSV. This is summarized briefly in Table II.

BF₃ Phenolate with Aluminum Alkyls

When BF₃ phenolate was used instead of BF₃ · Et₂O, the rate of polymerization of butadiene was increased twofold or more. Thus, the polymer yields obtained with TEAL and BF₃ phenolate after 0.5 and 1 h at 50°C were 49 and 75%, respectively, whereas the yield after 1 h with BF₃ · Et₂O was only 46%. Based upon the 1 h yields, the reaction rate constant, $k h^{-1}$, with BF₃ phenolate was 1.38 vs. 0.6 with BF₃ · Et₂O.

Furthermore, with BF_3 phenolate, neither the length and/or branching of the alkyl nor the presence of hydride in the R_1R_2Al 's had an appreciable effect upon either the polymerization rate or polymer DSV, as shown by the upper lines in Figures 1 and 2.

Comparison of Hydroxyl Containing BF₃ Complexes

 BF_3 alcoholates, BF_3 hydrate, and BF_3 phosphoric acid complex were evaluated with TEAL and with tri-(*n*-propyl)-aluminum (TNPA). The results, together with two control experiments, are summarized in Table III. It is pointed out that the butadiene used in this series of experiments contained

	Polymer Yield (%)		DSV	
BF ₃ Complex	TEAL	TNPA	TEAL	TNPA
Et ₂ O	25	15	2.5	2.0
-(BF ₃ gas)	45	28	2.9	2.6
CH ₃ OH	42	49	2.4	2.0
C_2H_5OH	53	48	2.8	2.5
2 Phenol	72		2.6	—
H_2O	_	76		2.8
H ₃ PO ₄	71	72	2.9	

 Table III
 Hydroxyl Containing BF₃ Complexes

more vinyl acetylene as an impurity than was present in the other experiments discussed in this report (about 200 ppm vs. 50 ppm of vinyl acetylene) and that acetylenes cause an induction period when using $BF_3 \cdot Et_2O.^{3b,4a}$

Both the BF₃ methanol and BF₃ ethanol complexes promoted polymerization and/or shortened the induction period significantly more rapidly than did BF₃ \cdot Et₂O. With either TEAL or TNPA, these BF₃ alcoholates produced approximately 50% yields of polybutadiene in 1 h vs. a 25% yield obtained with TEAL plus BF₃ \cdot Et₂O. However, the polymers prepared with TNPA and the alcoholates appeared to have somewhat lower DSVs than did those prepared with TEAL.

The BF₃ hydrate and the phosphoric acid complexes produced 76 and 72% yields of polybutadiene, respectively, which were equivalent to the yield produced by BF₃ phenolate. With these complexes, TEAL and TNPA produced approximately equivalent yields of polymers, which appeared to have approximately equivalent DSVs. It is pointed out that the BF₃ hydrate and H₃PO₄ complexes (and to a lesser extent the BF₃ alcoholates) have the disadvantage that they are so polar that they are insoluble in benzene and in the butadiene premix. Furthermore, the polybutadienes prepared with BF₃ \cdot H₃PO₄ contained about 5% of gel, while gel was virtually absent in all the other polymers.

Effect of Different Aluminum Alkyls with BF₃ Benzaldehyde

 BF_3 benzaldehyde complex was evaluated with each of nine different R_1R_2Al 's, and the polymer yields obtained during 2 h are presented in Table IV where they may be compared with data for $BF_3 \cdot Et_2O$.

The $R_1R_2Al's$ containing branched alkyl groups produced significantly higher polymer yields than did the straight-chain $R_1R_2Al's$ with BF_3 benzaldehyde; the respective 2 h yields were about 78 vs. 56%. The length of the alkyl group in R_1R_2Al had no effect when used with BF_3 benzaldehyde, although the length of the alkyl was very important in combination with $BF_3 \cdot Et_2O$.

Other BF₃ aromatic aldehyde complexes gave results similar to those reported for BF₃ benzaldehyde. Table V shows results obtained with BF₃ tolualdehyde and m-NO₂- and p-NO₂-benzaldehyde used with TEAL and with TIBAL.

Comparison of Different Aluminum Alkyls Plus HF·Et₂O

The use of $HF \cdot Et_2O$ in combination with any of the R_1R_2Al 's rapidly polymerized butadiene, regardless of the length or the branching of the alkyl group or the presence of hydride. TIBAL gave a slightly

	Yield (w	Yield (wt %)		DSV	
Alkyl	$BF_3 \cdot = Et_2O$	C ₆ H ₅ CHO	Et_2O	C ₆ H ₅ CHO	
C ₁	86	56	2.8	3.3	
C_2	74	58	2.8	2.6	
$C_2 - H$	-	52		2.3	
C ₃	42	63	2.4	2.5	
n-C ₄	34	56	2.5	2.4	
$n-C_6$	51	53	2.6	2.7	
i-C4	29	75	1.5	2.6	
i-C ₄ —H	23	84	2.2	2.2	
i-C ₆	13	78	2.0	2.0	

Table IV Comparison of BF₃ · Et₂O and BF₃ · C₆H₅CHO

Time = 2 h.

	Yield (wt %)		DSV	
BF ₃ Complex	TEAL	TIBAL	TEAL	TIBAL
Et_2O	74	29	2.8	1.5
Benzaldehyde	58	75	2.6	2.6
p-Tolualdehyde	54	76	2.5	2.3
m-NO ₂ — benzaldehyde	68	81	2.3	2.5
$p-NO_2$ — benzaldehyde	31	72	-	2.7

Table V Other BF₃ Aromatic Aldehydes

Time = 2 h.

higher rate than did TEAL. Thus, at R_3Al : NiOct : HF · Et₂O = 1.0 : 0.075 : 2.5 mmol/100 g butadiene, and 1 h polymerization time at 50°C, TIBAL produced an 88% polymer yield vs. an 81% yield with TEAL, resulting in reaction rate constants, $k h^{-1}$, of 2.1 vs. 1.66, respectively.

Table VI presents both DSV and Mooney viscosity data on a series of four polymers prepared using TEAL, TNPA, TIBAL, and DIBA-H. The Mooney viscosities averaged 76 ± 2 and thus showed no significant trend. The DSVs of the polymers prepared with both TIBAL and DIBA-H were marginally lower than were the others.

Polybutadiene Microstructures

The microstructures of the polymers prepared with nickel catalyst systems were unaffected by variations in the size or branching of the alkyl, or the presence of hydride in the R_1R_2Al , as shown by infrared analyses presented in Table VII. Replacement of $BF_3 \cdot Et_2O$ with BF_3 aldehydes, esters, ketones, or phenolates, or with $HF \cdot Et_2O$, did not affect the microstructure of the resulting polymers. BF_3 acrylonitrile complex was an exception since it resulted in the content of *trans*-1,4-polybutadiene increasing from about 1.5 to 7.5%.

Table VI Evaluation of $R_1R_2Al's$ with $HF \cdot Et_2O$

Alkyl	Yield (%)	DSV	ML-4
Ca	92	4.7	74
$n-C_3$	92	5.0	76
i-C4	91	4.4	78
i-C ₄ —H	91	4.3	74

 $R_1R_2Al:NiOct:HF\cdot Et_2O$ = 1 : 0.075 : 3 mhm 50°C, 3 h, in benzene.

DISCUSSION

Since the polymerization rate when using $BF_3 \cdot Et_2O$ is influenced by the size of the alkyl groups on the aluminum alkyls, it appears that a steric effect is involved. It is believed^{2,5,10} that normally an exchange of alkyl groups and fluorine atoms occurs between the R₃Al and BF₃. Large alkyl groups probably hinder this exchange and so become one factor in lowering the polymerization rate. Chain transfer occurs³ in this system. If the chain transfer rate is not altered, more transfers could occur when the polymerization rate is low, and so polymer having a lower DSV could be formed.

It is not known yet how the BF₃ phenolate, alcoholates, and hydrate promote more rapid polymerization of butadiene than does BF₃ · Et₂O, but these are strong acids (e.g., the acidity function, H_0 , of BF₃ · H₂O is reported¹¹ to be -11.2 and BF₃ phenolate as greater than that of concentrated H₂SO₄ = -6.5). It is proposed that the strongly ionic (acidic) character of BF₃ phenolate and hydrate is a key factor in their promotion of rapid polymerization rates.

Table VII PBD Microstructure

Catalyst				
Alkyl Al	\mathbf{BF}_3 Complex	cis-	trans-	1,2-
C ₁	Et_2O	97.2	1.2	1.6
$n-C_6$	Et ₂ O	97.1	1.6	1.3
C_2	Butyraldehyde	97.4	1.2	1.4
C_1	2 Phenol	97.3	1.3	1.4
i-C ₄ —H	2 Phenol	97.1	1.1	1.8
C_2	Benzaldehyde	97.2	1.7	1.1
i-C4	$p-NO_2$ —benzaldehyde	97.6	1.0	1.4
C_2	Benzonitrile	98.0	1.2	0.8
$\overline{C_2}$	Acrylonitrile	91.8	7.5	0.7
i-C ₄	HF∙Et₂O	97.5	1.4	1.1

HF is a rather strong acid, and it has about 60% ionic character. The HF \cdot Et₂O is also a strong acid and should be capable of being a proton donor. Both the BF₃ phenolate and the HF \cdot Et₂O probably enhance the formation of strong ion pairs, which may promote rapid polymerization. However, HF causes less chain transfer than does BF₃ and so produces polymers having higher DSVs. The average number of polymer chains formed per nickel atom using HF \cdot Et₂O and the BF₃ \cdot Et₂O with TEAL catalyst systems, based upon number average molecular weights, \overline{M}_n , of about 220,000 and 100,000 and the nickel concentrations in Tables I and VI, are calculated to be about 6 and 20, respectively.

CONCLUSIONS

When utilizing $BF_3 \cdot Et_2O$ and a nickel salt with butadiene in benzene premix, both the polymerization rate and the polymer DSV decrease significantly as the size of the alkyl group in the aluminum alkyls (R_3Al) increases; the only R_3Al for practical use with $BF_3 \cdot Et_2O$ is triethylaluminum.

 BF_3 phenolate (or other hydroxyl-containing complexes) helps to promote much more rapid polymerization than does $BF_3 \cdot Et_2O$; any available R_1R_2Al may be used since the size of the alkyl is almost immaterial with the phenolate.

With BF_3 complexes of aromatic aldehydes, branched alkyls in R_3Al give significantly greater polymerization rates than do straight chain alkyls, but the length of the alkyl has no effect; the preferred R_3Al is triisobutylaluminum (TIBAL).

 $HF \cdot Et_2O$ promotes both more rapid polymerization and greater polymer molecular weight than the BF_3 complexes do, and the nature of the alkyl group in R₃Al has only a small effect; TIBAL is preferred.

The author expresses his appreciation to Mr. C. E. Gordon for the infrared analyses and to The Goodyear Tire & Rubber Company for permission to publish this work.

REFERENCES

- (a) K. Ueda, A. Ohnishi, T. Yoshimoto, J. Hosono, K. Maeda, and T. Matsumoto, Kogyo Kagaku Zasshi, 66, 1103 (1963); (b) *Ibid.*, Prepr. Petroleum Div. Am. Chem. Soc., 9(4), A-47 (1964); (c) K. Ueda et al., U. S. Pat. 3,170,907 (February 23, 1965), (to Bridgestone Tire Co., Ltd.).
- A. Ohnishi, Yuki Gosei Kagaku Kyokai Shi, 25(7), 587 (1967).
- (a) T. Yoshimoto, K. Komatsu, R. Sakata, K. Yamamoto, Y. Takeuchi, A. Ohnishi, and K. Ueda, *Mac*romol. Chem. 139, 61 (1970); (b) R. Sakata et al., *Ibid.*, 139, 73 (1970).
- C. Dixon, E. W. Duck, D. P. Grieve, D. K. Jenkins, and M. N. Thornber, *Eur. Polym. J.*, 6, 1359 (1970);
 E. W. Duck et al., *Ibid.*, 7, 55 (1971); C. Dixon,
 E. W. Duck, and D. K. Jenkins, *Ibid.*, 8, 13 (1972).
- (a) M. C. Throckmorton, Union of South Africa Pat. 68/00446 (August 29, 1968), U. S. Pat. 3,910,869 (October 7, 1975) (to The Goodyear Tire & Rubber Co.). (b) M. C. Throckmorton and F. S. Farson, *Rubber Chem. Tech.*, 45, 268 (1972).
- M. C. Throckmorton and W. M. Saltman, U. S. Pat. 3,483,177 (December 9, 1969), U. S. Pat. 3,528,957 (September 15, 1970) (to The Goodyear Tire & Rubber Co.).
- M. C. Throckmorton and W. M. Saltman, U. S. Pat. 3,856,764 (December 24, 1974) (to The Goodyear Tire & Rubber Co.).
- M. C. Throckmorton, Kautschuk Gummi Kunststoffe, 29, 293 (1969).
- R. Silas, J. Yates, and V. Thornton, Anal. Chem., 31, 529 (1959).
- 10. M. C. Throckmorton, unreported results.
- M. I. Vinnik, G. B. Manelis, and N. M. Chirkov, translated from *Problemy Kinetiki Kataliya*, 10, 285 (1960).

Received June 20, 1990 Accepted September 7, 1990